VAIM: Visual Analytics for Influence Maximization
Teaser Image | |
Author | |
Conference Paper
|
|
Editor | |
Abstract |
In social networks, individuals' decisions are strongly influenced by recommendations from their friends and acquaintances. The influence maximization (IM) problem asks to select a seed set of users that maximizes the influence spread, i.e., the expected number of users influenced through a stochastic diffusion process triggered by the seeds. In this paper, we present VAIM, a visual analytics system that supports users in analyzing the information diffusion process determined by different IM algorithms. By using VAIM one can: (i) simulate the information spread for a given seed set on a large network, (ii) analyze and compare the effectiveness of different seed sets, and (iii) modify the seed sets to improve the corresponding influence spread.
|
Year of Publication |
2020
|
Conference Name |
28th International Symposium on Graph Drawing and Network Visualization
|
Publisher |
Lecture Notes in Computer Science
|
Funding projects | |
Video Link | |
Supplementary Material | |
Download citation |